ON A CLASS OF LINEAR DIFFERENTIAL GAMES WITH IMPULSE CONTROLS

PMM Vol. 38, N 4, 1974, pp. 590-598
V.I. UKHOBOTOV
(Moscow)
(Received March 12, 1973)

Abstract

We examine a class of linear differential games in which the first player can exert impulse controls while the second player has at his disposal controls with geometric constraints. We formulate a game problem and we prove a theorem which answers the problem posed in the class of games being considered. We present examples. The paper's contents abut those in [1-5].

1. Let the equations of motion have the following form:

$$
\begin{equation*}
d \mathbf{z}=B \mathbf{z} d t+\mathbf{v} d \boldsymbol{t}+N d \Phi, \quad \mathbf{z} \in R^{n}, \quad \mathbf{v} \in V \subset R^{n} \tag{1.1}
\end{equation*}
$$

Here R^{n} is an n-dimensional Euclidean space, B is a constant square matrix of dimension n, N is a constant matrix having n rows and r columns, V is a convex compactum.

Let $t>0$ and $C[0, t]$ be a Banach space of continuous r-dimensional vectorvalued functions $\mathrm{x}(\tau)$, defined on [0, t], with norm $x([0, t], \mathbf{x}(\tau))=\max _{0 \leqslant \tau \leqslant t} \times$ $\|\mathbf{x}(\tau)\|$, where $\|\mathbf{x}(\tau)\|$ is the norm in an r-dimensional linear normed space R^{r}. By $W[0, t]$ we denote the space of r-dimensional vector-valued functions $\Phi(\tau)$ of bounded variation on $[0, t]$; the norm in $W[0, t]$, denoted by $\rho([0, t], \Phi(\tau))$, is generated by the norm $x([0, t], x(\tau))$ as in the space adjoint to $C[0, t]$.

Let there be given $z_{0} \in R^{n}, \sigma>0, \Phi(\tau) \in W[0, \sigma]$ and the vector-valued function $\mathbf{v}(\tau) \in V$ measurable on $[0, \sigma]$. We assume that under the action of functions $\Phi(\tau), \mathbf{v}(\tau)$ the phase point z of system (1.1) displaces from the initial position to the point

$$
\begin{equation*}
\mathbf{z}(\sigma)=e^{\sigma B} \mathbf{Z}_{0}+\int_{0}^{\sigma} e^{(\sigma-\tau) B} \mathbf{v}(\tau) d \tau+\int_{0}^{\sigma} e^{(\sigma-\tau) B} N d \Phi(\tau) \tag{1.2}
\end{equation*}
$$

at instant σ, where the last integral is understood in the Riemann-Stieltjes sense. We introduce the variable μ, varying by the following rule:

$$
\begin{equation*}
\mu(\sigma)=\mu_{0}-\rho([0, \sigma], \Phi(\tau)) \tag{1.3}
\end{equation*}
$$

We write the constraints on the choice of function $\Phi(\tau)$ in the form of inequalities

$$
\begin{equation*}
\mu(\sigma) \geqslant 0 \tag{1.4}
\end{equation*}
$$

By I we denote the set $\mu \geqslant 0$ and the direct product of R^{n} and I by $R^{n} \times \mathrm{I}$. In the game problem to be examined below we use the following rule. The first player chooses a function $\Phi(\tau)$, the second player the function $v(\tau) \in V$. Let $\left[z_{0} ; \mu_{0}\right] \in R^{n} \times I$ be the initial position of the game. According to his own judgement the second player selects $\sigma_{1}>0$ and the control $\mathbf{v}_{1}(\tau) \in V$ measurable on $\left[0, \sigma_{1}\right]$. He communicates his own choice to the first player. Knowing the second player's choice, the first player chooses the control $\Phi_{1}(\tau) \models W\left[0, \sigma_{1}\right]$ on $\left[0, \sigma_{1}\right)$ so as to fulfil (1.4). Under the action of the controls chosen the point $\left[\mathrm{z}_{0} ; \mu_{0}\right] \in R^{n} \times \mathrm{I}$ displaces to the point
$\left[\mathbf{z}\left(\sigma_{1}\right) ; \mu\left(\sigma_{1}\right)\right] \in R^{n} \times \mathrm{I}$ (see (1.2) and (1.3)). Next, the second player selects $\sigma_{2}>0$ and the control $\mathbf{v}_{2}(\tau)$ on $\left[0, \sigma_{2}\right]$ and informs the first player, etc. These are the so-called σ-strategies.

Let π be the linear mapping of R^{n} into R^{q}, where R^{q} is a q-dimensional linear Euclidean space. For each $t>0$ we consider the set

$$
\begin{equation*}
A(t)=\left\{\mathbf{y} \in R^{q}: \mathbf{y}=\int_{0}^{t} \pi e^{(t-\tau) B} N d \Phi(\tau), \rho([0, t] \Phi(\tau))=1\right\} \tag{1.5}
\end{equation*}
$$

Using the weak compactness of a ball in $W[0, t]$, we can show that for each $t>0$ the set $A(t)$ is a convex compactum in R^{q} given by the system of inequalities (the asterisk denotes transposition)

$$
\begin{equation*}
(\mathbf{y}, \psi) \leqslant \max _{0 \leqslant \tau \leqslant t}\left\|N^{*} e^{\tau B^{*} \pi *} \psi\right\| \tag{1.6}
\end{equation*}
$$

We set $A(0)=\bigcap_{t>0} A(t)$. Let a closed set G be given in R^{q}.
Definition 1. A game starting from a point $[z ; \mu] \in R^{n} \times I$ can be completed at an instant $t_{1}>0$ if for any σ-strategy of the second player there exists a σ-strategy of the first player such that $\pi z\left(t_{1}\right) \in G+\mu\left(t_{1}\right) A_{1}(0)$.

The following problem can be formulated in relation with the definition given.
Problem 1. Given $G \subset R^{q}$ and $t_{1}>0$; determine the set of those points [\mathbf{z}; $\mu] \in R^{n} \times I$ from which the game can be completed at the instant t_{1}.
2. We shall solve Problem 1 under the following assumptions:

1) $\quad \pi e^{\tau R} V=\mathbf{y}(\tau)+k(\tau) S, \quad \tau \geqslant 0$
2) $\quad\left\|N^{*} e^{\tau B^{*}} \pi^{*} \psi\right\|=\beta(\tau) c(\psi), \quad \tau \geqslant 0, \psi \in R^{q}$
3) $m(t)=\max _{0 \leqslant \tau \leqslant t} \beta(\tau)>0, \quad t>0$
4) $\quad G=\mathbf{a}+\varepsilon S, \quad \mathbf{a} \in R^{q}, \quad \mathbf{a}=$ const

Here S is some compactum in R^{q}, convex and symmetric with respect to the origin, containing the zero vector as an interior point, $c(\psi)$ is the support function of S

$$
c(\psi)=\max _{s \in S}(s, \psi) \quad \text { for } \psi \in R^{q}
$$

$k(\tau)$ and $\beta(\tau)$ are continuous scalar functions, $k(\tau) \geqslant 0, \quad \beta(\tau) \geqslant 0$ for $\tau \geqslant 0$, $\mathbf{y}(\tau)$ is a continuous q-dimensional vector-valued function.
From assumptions (1) and (2) and from (1.5), (1.6) we can get that

$$
\begin{align*}
& \left\{\mathbf{w} \in R^{q}: \mathbf{w}=\int_{\tau_{1}}^{\tau_{1}+\tau_{2}} \pi e^{\tau B} \mathbf{v}(\tau) d \tau, \mathbf{v}(\tau) \in V\right\}= \tag{2.1}\\
& \int_{\tau_{1}}^{\tau_{1}+\tau_{2}} \mathbf{y}(\tau) d \tau+\int_{\tau_{1}}^{\tau_{1}+\tau_{2}} k(\tau) d \tau \cdot S \\
& \pi e^{\tau_{1} B} A\left(\tau_{2}\right)=\max _{\tau_{1} \leqslant \tau_{1} \leqslant \tau_{1}+\tau_{2}} \beta(\tau) \cdot S \tag{2.2}
\end{align*}
$$

for any $\boldsymbol{\tau}_{\mathbf{1}} \geqslant 0, \boldsymbol{\tau}_{\mathbf{2}} \geqslant 0$.
By t_{2} we denote the largest of the numbers $t \geqslant 0$ for which

$$
\varepsilon-\int_{0}^{t} k(\tau) d \tau \geqslant 0
$$

If this inequality is fulfilled for all $t \geqslant 0$, we set $t_{\mathbf{2}}=+\infty$.
Lemma 1. Let $0 \leqslant t_{1} \leqslant t_{2}$; in order that the game can be completed at the instant t_{1} from the point $[\mathbf{z} ; \mu] \in R^{n} \times I$, it is necessary and sufficient that

$$
\begin{equation*}
\boldsymbol{\pi} e^{t_{1} B} \mathbf{Z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a} \in\left(\mu m\left(t_{1}\right)+\mathbf{\varepsilon}-K_{1}\right) S, \quad K_{1}=\int_{0}^{t_{1}} k(\tau) d \tau \tag{2,3}
\end{equation*}
$$

Proof. Using the definition of the operation (see [1]), for example), we can show that

$$
\begin{align*}
& \left(\mu m\left(t_{1}\right)+\varepsilon-K_{1}\right) S=\left(\mu m\left(t_{1}\right)+\varepsilon\right) S \star K_{1} S \tag{2.4}\\
& \left(\mu m\left(t_{1}\right)+\varepsilon-K_{1}\right) S=\mu m\left(t_{1}\right) S+\left(\varepsilon S \star K_{1} S\right) \tag{2.5}
\end{align*}
$$

Necessity. Suppose that (2.3) is not fulfilled; then from (2.1) and (2.4) follows the existence of the control $\mathbf{v}_{1}(\tau) \in V$ measurable on $\left[0, t_{1}\right]$, such that

$$
\begin{equation*}
\pi e^{t_{1} B} \mathbf{z}+\int_{0}^{t_{1}} \pi e^{\left(t_{1}-\tau\right) B} \mathbf{v}_{1}(\tau) d \tau-\mathbf{a} \equiv\left(\mu m\left(t_{1}\right)+\varepsilon\right) S \tag{2.6}
\end{equation*}
$$

Suppose the first player chose the control $\Phi_{1}(\tau) \in W\left[0, t_{1}\right]$ satisfying (1.4). Then there exists $\lambda \in[0,1]$ such that

$$
\lambda \mu=\rho\left(\left[0, t_{1}\right], \Phi_{1}(\tau)\right), \quad \mu\left(t_{1}\right)=(1-\lambda) \mu
$$

From this and from relations (1.5) and (2.2) follows the existence of a vector $s_{1} \in S$ such that

$$
\int_{0}^{t_{1}} \pi e^{\left(t_{1}-\tau\right) B} N d \Phi(\tau)=\lambda \mu m\left(t_{1}\right) s_{1}
$$

Then from (2.6) it follows that

$$
\pi \mathrm{z}\left(t_{1}\right)=\pi e^{t_{1} B} \mathbf{z}+\int_{0}^{t_{1}} \pi e^{\left(t_{1}-\tau\right) B} \mathbf{v}_{1}(\tau) d \tau+\lambda \mu m\left(t_{1}\right) s_{1} \in \mathbf{a}+(1-\lambda) \mu A(0)+\varepsilon S
$$

because for any $\lambda \in[0,1]$ and $s \in S$ we have

$$
\mathbf{a}-\lambda \mu m\left(t_{1}\right) s+(1-\lambda) \mu A_{1}(0)+\varepsilon S \subset \mathbf{a}+\left(\mu m\left(t_{1}\right)+\varepsilon\right) S
$$

Sufficiency. Suppose (2.3) holds; then from (2.5) follows the existence of $s_{1} \in$ S such that

$$
\begin{equation*}
\pi e^{t_{1} B_{Z}}+\int_{0}^{t_{1}} \pi e^{\left(t_{1}-\tau\right) B} \mathbf{y}(\tau) d \tau+\mu m\left(t_{1}\right) s_{1} \in \mathbf{a}+\varepsilon S \tag{2.7}
\end{equation*}
$$

for all functions $\mathbf{v}(\tau) \in V$ measurable on $\left[0, t_{1}\right]$. The proof of the sufficiency follows from (2.7) if we make use of (1.5) and (2.2).

Let us now consider the case $t_{1}>t_{2}$.
Theorem 1. In order that the game from the point $[\mathbf{z} ; \mu] \in R^{n} \times I$ can be completed at an instant $t_{1}>t_{2}$, it is necessary and sufficient that

$$
\begin{equation*}
\pi e^{t_{1} B} \mathbf{Z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+m\left(t_{1}\right) \int_{t_{2}}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau \cdot S \subset \mu m\left(t_{1}\right) S \tag{2.8}
\end{equation*}
$$

Proof. Necessity. For each integer $j \geqslant 1$ we define

$$
b(j)=\sum_{i=1}^{j}\left[\left(\int_{t_{2}+(i-1) \sigma}^{t_{2}+i \sigma} k(\tau) d \tau\right) / m\left(t_{2}+i \sigma\right)\right], \quad \sigma=\frac{t_{1}-t_{2}}{j}
$$

As is easy to see

$$
\lim _{j \rightarrow \infty} b(j)=\int_{t_{2}}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau
$$

Suppose that (2.8) is not fulfilled; then a number j_{1} exists such that

$$
\begin{equation*}
\pi e^{t_{1} B} \mathbf{Z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+m\left(t_{1}\right) b\left(j_{1}\right) S \equiv \mu m\left(t_{1}\right) S \tag{2.9}
\end{equation*}
$$

We set

$$
\eta_{i}=\left(\int_{t_{2}+(i-1) \sigma_{1}}^{0} k(\tau) d \tau\right) \mid m\left(t_{2}+i \sigma_{1}\right), \quad \sigma_{1}=\frac{t_{1}-t_{2}}{t_{1}}
$$

Then we can write $b\left(j_{1}\right)=\eta_{1}+\eta_{2}+\ldots+\eta_{j_{1}}$.
From (2.9) and the convexity of compactum S follows the existence of a nonzero vector $\psi_{1} \in R^{q}$ and a number $v>0$ such that

$$
\begin{equation*}
\left(\pi e^{t_{1} B} \mathbf{Z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}, \psi\right)+m\left(t_{1}\right) b\left(j_{1}\right) c\left(\psi_{1}\right) \geqslant \mu m\left(t_{1}\right) c\left(\psi_{1}\right)+v \tag{2.10}
\end{equation*}
$$

Let the vector $s_{1} \in S$ be such that $c\left(\psi_{1}\right)=\left(s_{1}, \psi_{1}\right)$. From (2.1) follows the existence of a function $\mathbf{v}_{1}(\tau)$ measurable on $\left[0, \sigma_{1}\right]$, such that

$$
\begin{equation*}
\pi e^{\left(t_{1}-\alpha_{1}\right) B} \int_{0}^{\sigma_{1}} e^{\left(\sigma_{1}-\tau\right) B} \mathbf{v}_{1}(\tau) d \tau=\int_{t_{1}-\sigma_{1}}^{t_{1}} \mathbf{y}(\tau) d \tau+\int_{t_{1}-\sigma_{1}}^{t_{1}} k(\tau) d \tau \cdot s_{1} \tag{2.11}
\end{equation*}
$$

Let us show that if the second player takes σ_{1} and $\mathbf{v}_{1}(\tau) \in V$ on $\left[0, \sigma_{1}\right]$, then for any control $t_{1}-\sigma_{1}$
$\pi e^{\left(t_{1}-\sigma_{1}\right) B} \mathbf{z}\left(\sigma_{1}\right)+\int_{0}^{t_{1}-\sigma_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+m\left(t_{1}-\sigma_{1}\right)\left(b\left(j_{1}\right)-\eta_{j_{1}}\right) S \equiv \mu\left(\sigma_{1}\right) m\left(t_{1}-\sigma_{1}\right) S$ By virtue of (1.4) and (2.2) we can assume that there exist $s \in S$ and $\lambda \in[0,1]$ such that

$$
\begin{align*}
& \mu\left(\sigma_{1}\right)=(1-\lambda) \mu \tag{2.13}\\
& \pi e^{\left(t_{1}-\sigma_{1}\right) B} \int_{0}^{\sigma_{1}} e^{\left(\sigma_{1}-\tau\right) B} N d \Phi(\tau)=\lambda \mu \max _{t_{1} \rightarrow \sigma_{1} \leqslant \tau \leqslant t_{1} \beta(\tau) \cdot s} \tag{2.14}
\end{align*}
$$

Then, from (2.11) and (2.14) follows

$$
\begin{gather*}
\pi e^{\left(t_{1}-\sigma_{1}\right) B} \mathbf{z}\left(\sigma_{1}\right)+\int_{0}^{t_{1}-\sigma_{1}} \mathbf{y}(\tau) d \tau=\pi e^{t_{1} \boldsymbol{B}} \mathbf{z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau+ \tag{2.15}\\
\int_{t_{1}-\sigma_{1}}^{t_{1}} k(\tau) d \tau \cdot s_{1}+\lambda \mu \max _{t_{1}-\sigma_{1} \leqslant \tau \leqslant t_{1} \beta(\tau) \cdot s}
\end{gather*}
$$

Let $\mu \leqslant b\left(j_{1}\right)-\eta_{j_{1}}$; then (2.12) always holds since

$$
\mu\left(\sigma_{1}\right)=(1-\lambda) \mu \leqslant b\left(j_{1}\right)-\eta_{j_{1}}
$$

We now examine the case when $\mu \geqslant b\left(j_{1}\right)-\eta_{j_{1}}$. If $\lambda \in[0,1]$ is such that $\mu\left(\sigma_{1}\right)<b\left(j_{1}\right)-\eta_{j_{1}}$, then (2.12) holds. Let us consider $\lambda \in[0,1]$ such that
$\mu\left(\sigma_{1}\right) \geqslant b\left(j_{1}\right)-\eta_{j_{1}}$, i. . .

$$
\begin{equation*}
0 \leqslant \lambda \mu \leqslant \mu-\left(b\left(j_{1}\right)-\eta_{j_{1}}\right) \tag{2.16}
\end{equation*}
$$

from (2.15) and (2,10) it follows that

$$
\begin{aligned}
& \left(\pi e^{\left(t_{1}-\sigma_{1}\right) B} \mathbf{z}\left(\sigma_{1}\right), \psi_{1}\right)+\left(\int_{0}^{t_{1}-\sigma_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}, \psi_{1}\right)+ \\
& \quad m\left(t_{1}-\sigma_{1}\right)\left(b\left(j_{1}\right)-\eta_{j_{1}}\right) c\left(\psi_{1}\right)- \\
& \mu\left(\sigma_{1}\right) m\left(t_{1}-\sigma_{1}\right) c\left(\psi_{1}\right) \geqslant \mu\left(t_{1}\right) m\left(t_{1}\right) c\left(\psi_{1}\right)-m\left(t_{1}\right) b\left(j_{1}\right) c\left(\psi_{1}\right)+ \\
& \quad \int_{t_{1}-\sigma_{1}}^{t_{1}} k(\tau) d \tau c\left(\psi_{1}\right)-\lambda \mu \max _{t_{1}-\sigma_{1} \leqslant \tau \leqslant t_{1} \beta(\tau) c\left(\psi_{1}\right)+}^{m\left(t_{1}-\sigma_{1}\right)\left(b\left(j_{1}\right)-\eta_{j_{1}}\right) c\left(\psi_{1}\right)-} \\
& (1-\lambda) \mu m\left(t_{1}-\sigma_{1}\right) c\left(\psi_{1}\right)+v=g(\lambda)
\end{aligned}
$$

We can show that the inequality $g(\lambda) \geqslant v$ is fulfilled for $\lambda \in[0,1]$ and satisfying (2.16); this signifies that (2.12) holds.

Repeating this argument j_{1} times we find the second player's σ-strategy such that

$$
\pi e^{t_{2} B_{\mathbf{Z}}}\left(t_{1}-t_{2}\right)+\int_{0}^{t_{2}} \mathbf{y}(\tau) d \tau-\mathbf{a} \subset \mu\left(t_{1}-t_{2}\right) m\left(t_{2}\right) S
$$

is fulfilled at the instant $t_{1}-t_{2}$ for any σ-strategy of the first player; here $\sigma_{i}=\sigma_{1}$. The application of Lemma 1 completes the proof of necessity.

Sufficiency. Suppose (2.8) holds; then

$$
\begin{equation*}
\mu \geqslant \int_{i_{n}}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau \tag{2.17}
\end{equation*}
$$

must necessarily be fulfilled. Since $m\left(t_{1}\right) \geqslant m(\tau)$ for $0 \leqslant \tau \leqslant t_{1}$,

$$
\begin{equation*}
\int_{t_{1}-\sigma}^{t_{1}} k(\tau) d \tau+\dot{m}\left(t_{1}\right) \int_{i_{2}}^{t_{1}-\sigma} \frac{k(\tau)}{m(\tau)} d \tau \leqslant m\left(t_{1}\right) \int_{i_{2}}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau \tag{2.18}
\end{equation*}
$$

for any $\sigma \in\left[t_{2}, l_{1}\right]$. From (2.8), (2.17) and (2.18) follows

$$
\begin{align*}
& \pi e^{t_{1} B} \mathbf{z}+\int_{t_{2}}^{t_{1}} \mathbf{y}(\tau) d \boldsymbol{\tau}-\mathbf{a}+\int_{t_{2}}^{t_{2}} k(\tau) d \tau \times \tag{2.19}\\
& \times S \subset\left(\mu m\left(t_{1}\right)-m\left(t_{1}\right) \int_{t_{2}}^{t_{1}-\sigma} \frac{k(\tau)}{m(\tau)} d \tau\right) S
\end{align*}
$$

Suppose that the second player had selected $0<\sigma_{1} \leqslant t_{1}-t_{2}$ and the control $\mathrm{v}_{1}(\tau) \in V$ on $\left[0, \sigma_{1}\right]$; then there exists $s_{1} \in S$ such that (2,11) holds.

Let us first consider the case $m\left(t_{1}-\sigma_{1}\right)<m\left(t_{1}\right)$. Then, according to (2.19), there exists $s_{2} \in S$ such that

$$
\begin{equation*}
\pi e^{t_{1} B} \mathbf{Z}+\int_{i_{7}}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+\int_{t_{1}-\sigma_{1}}^{t_{1}} k(\tau) d \tau s_{1}+m\left(t_{1}\right)\left(\mu-\int_{i_{2}}^{t_{1}-\sigma_{1}} \frac{k(\tau)}{m(\tau)} d \tau\right) s_{2}=\mathbf{0} \tag{2.20}
\end{equation*}
$$

where $\theta \in R^{q}$ is the zero vector. For $s_{2} \in S$ we can find a function $\Phi(\tau) \in$ $W\left[0, \sigma_{1}\right], \rho\left(\left[0, \sigma_{1}\right], \Phi(\tau)\right)=1$ such that

$$
\begin{equation*}
\pi e^{\left(t_{1}-\sigma_{1}\right) B} \int_{0}^{\sigma_{1}} e^{\left(\sigma_{1}-\tau\right) B} N d \Phi(\tau)=\max _{t_{1}-\sigma_{1} \leqslant \tau \leqslant t_{1}} \beta(\tau) \cdot s_{2}=m\left(t_{1}\right) s_{2} \tag{2.21}
\end{equation*}
$$

To the first player we assign the control

$$
\Phi_{1}(\tau)=\left(\mu-\int_{t_{2}}^{t_{1}-\sigma_{1}} \frac{k(\tau)}{m(\tau)} d \tau\right) \Phi(\tau)
$$

Then, by virtue of (2.20) and (2.21)

In addition

$$
\pi e^{\left(t_{1}-\sigma_{1}\right) B} \mathbf{z}\left(\sigma_{1}\right)+\int_{0}^{t_{1}-\sigma_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}=\boldsymbol{\theta}
$$

$$
\begin{equation*}
\mu\left(\sigma_{1}\right)=\int_{t_{1}}^{t_{1}-\sigma_{1}} \frac{k(\tau)}{m(\tau)} d \tau \tag{2,22}
\end{equation*}
$$

Consequently,
$\pi e^{\left(t_{1}-\sigma_{1}\right) B} \mathbf{z}\left(\sigma_{1}\right)+\int_{0}^{t_{1}-\sigma_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+m\left(t_{1}-\sigma_{1}\right) \int_{i_{1}}^{t_{1}-\sigma_{1}} \frac{k(\tau)}{m(\tau)} d \tau \cdot S \subset \mu\left(\sigma_{1}\right) m\left(t_{1}-\sigma_{1}\right) S$
Now let $m\left(t_{1}-\sigma_{1}\right)=m\left(t_{1}\right)$; then we assign $\Phi_{1}(\tau) \equiv 0$ to the first player. Since strict equality obtains in (2.18) when $m\left(t_{1}-\sigma_{1}\right)=m\left(t_{1}\right)$, the left hand side of inclusion (2.22) equals

$$
\pi e^{t_{1} B_{\mathbf{Z}}}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+\int_{t_{1}-\sigma_{1}}^{t_{1}} k(\tau) d \tau \cdot s_{1}+m\left(t_{1}\right) \int_{t_{2}}^{t_{1}-\sigma_{1}} \frac{k(\tau)}{m(\tau)} d \tau \cdot S
$$

Thus we have shown that the first player can always maintain the inclusion (2.22).
Consequently, the inclusion

$$
\pi e^{t_{2} B} \mathbf{Z}\left(t_{1}-t_{2}\right)+\int_{0}^{t_{2}} \mathbf{y}(\tau) d \tau-\mathbf{a} \in \mu\left(t_{1}-t_{2}\right) m\left(t_{2}\right) S
$$

is fulfilled at the instant $t_{1}-t_{2}$. The proof is completed by an application of Lemma 1 .
We consider now the case $\varepsilon=0$.
Theorem 2. (1) Let

$$
\lim _{\delta \rightarrow 0} \int_{\delta}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau<+\infty
$$

In order that the game from the point $[\mathbf{z} ; \mu] \in R^{n} \times I$ can be completed at an instant t_{1}, it is necessary and sufficient that

$$
\pi e^{t_{1} B} \mathbf{Z}+\int_{0}^{t_{1}} \mathbf{y}(\tau) d \tau-\mathbf{a}+m\left(t_{1}\right) \int_{0}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau \cdot S \subset \mu m\left(t_{1}\right) S
$$

2) Let

$$
\lim _{\delta \rightarrow 0} \int_{0}^{t_{1}} \frac{k(\tau)}{m(\tau)} d \tau=+\infty
$$

Then it is impossible to complete the game at an instant $t_{1}>0$ from any point $[z ; \mu] \in R^{n} \times I$.

The proof of this theorem is analogous to that of Theorem 1.
3. We present several examples illustrating Theorems 1 and 2.

Example 1. Let the equations of motion be of form (1.1). We assume V to be a convex compactum in R^{n}, symmetric with respect to the origin. Let $R^{q}=R^{1}$ and let set G be the segment $\left[\varepsilon_{1}, \varepsilon_{2}\right.$]. For $q=1$ the matrix π is an n-dimensional rowvector. We denote the segment $[-1,1]$ by S; then $G=a+\varepsilon S$, where $a=\left(\varepsilon_{1}+\right.$ $\left.\varepsilon_{2}\right) / 2, \varepsilon=\left(\varepsilon_{2}-\varepsilon_{1}\right) / 2$. It is not difficult to verify that the assumptions (1), (2), (4), stated in Sect. 2, are fulfilled, and

$$
\beta(\tau)=\left\|N^{\bullet} e^{\tau B^{*}} \pi^{*}\right\|, \quad \mathbf{y}(\tau)=0, \quad k(\tau)=\max _{\mathbf{v} \in V}\left(e^{\tau B^{*}} \pi^{*}, \mathbf{v}\right)
$$

For the fulfillment of assumption (3) we require $\beta(\tau)>0$ for $0<\tau \leqslant \sigma$, where σ is some number.

Example 2. Consider a game in which the equations of motion are

$$
d \mathbf{z}_{1}=\mathbf{z}_{2} d t+\mathbf{v} d t, \quad d \mathbf{z}_{2}=k_{1} \mathbf{z}_{1} d t+k_{2} \mathbf{z}_{2} d t+d \Phi
$$

where z_{1}, z_{2} are r-dimensional vectors, k_{1} and k_{2} are some numbers. It is easy to see that

$$
N=\| \|_{E}^{\Theta} \|
$$

where E and θ are the r-dimensional unit and zero matrices, respectively. In R^{r} we define the set

$$
S=\left\{\mathbf{w} \in R^{r}:(\mathbf{w}, \psi) \leqslant\|\psi\| \text { for } \psi \in R^{r}\right\}
$$

We assume that $\mathbf{v} \in \delta S$, where $\delta>0$. We set $q=r$ and $\pi=(E, 0)$; then $\pi z \in \varepsilon S$ signifies that $\mathrm{z}_{1} \in \varepsilon S$. Assumptions (1) - (4) are fulfilled in this example, and

$$
\pi e^{\tau E} V=\delta|\alpha(\tau)| S, \quad\left\|N^{*} e^{\tau D^{*}} \pi^{*} \psi\right\|=|\gamma(\tau)|\|\psi\|
$$

Here $\alpha(\tau)$ and $\gamma(\tau)$ are the solutions of the following equations:

$$
\begin{array}{ll}
\alpha^{\bullet \bullet}=k_{1} \alpha+k_{2} \alpha^{\bullet}, & \alpha(0)=1, \quad \alpha^{\bullet}(0)=0 \\
\gamma^{\bullet}=k_{1} \gamma+k_{2} \gamma^{*}, & \gamma(0)=0, \quad \gamma^{\bullet}(0)=1
\end{array}
$$

Example 3. Let the equations of motion have the form

$$
\begin{aligned}
& d \mathbf{z}_{1}=\mathbf{z}_{2} d t, \quad d \mathbf{z}_{2}=-k_{1} \mathbf{z}_{2} d t+B_{1} \mathbf{z}_{2} d t+d \Phi \\
& d \mathbf{y}_{1}=\mathbf{y}_{2} d t, \quad d \mathbf{y}_{2}=-k_{2} \mathbf{y}_{2} d t+B_{2} \mathbf{y}_{2} d t+\mathbf{v} d t
\end{aligned}
$$

Here $z_{1}, z_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}$ are r-dimensional vectors, k_{1}, k_{2} are some numbers, B_{1} and B_{2} are constant ($r \times r$)-matrices satisfying the conditions

$$
B_{i}^{*}=-B_{i}, \quad B_{i}{ }^{2}=-\omega_{i}{ }^{2} E, \quad i=1,2
$$

where ω_{i} are certain nonnegative numbers, E is the r-dimensional unit matrix. We assume that $\mathrm{v} \in \delta S$, where S is the r-dimensional closed Euclidean sphere of unit radius, $\delta>0$. We take the Euclidean norm as the norm in R^{r}; then (see [6], for example)

$$
\rho([0, t], \Phi(\tau))=\int_{0}^{t}\left(\sum_{i=1}^{r} d \Phi_{i}^{2}(\tau)\right)^{1 / 2}
$$

We set $q=r$ and $\pi=(E, 0,-E, 0)$; then $\pi z \in \varepsilon S$ signifies that $z_{1}-y_{1} \in \varepsilon S$. We can verify that

$$
\pi e^{\tau B} V=\delta \alpha(\tau) S, \quad\left\|N^{*} e^{\tau B^{*}} \pi^{*} \psi\right\|=\beta(\tau)\|\psi\|
$$

where

$$
\begin{aligned}
& \alpha(\tau)=\left(f_{2}{ }^{2}(\tau)+g_{2}{ }^{2}(\tau)\right)^{1 / 2}, \quad \beta(\tau)=\left(f_{1}{ }^{2}(\tau)+g_{1}{ }^{2}(\tau)\right)^{1 / 2} \\
& f_{i}(\tau)=\int_{0}^{\tau} e^{-k_{i} t} \cos \omega_{i} t d t, \quad g_{i}(\tau)=\int_{0}^{\tau} e^{-k k_{i} t} \sin \omega_{i} t d t, \quad i=1,2
\end{aligned}
$$

REFERENCES

1. Pontriagin, L. S., On linear differential games, 2. Dokl, Akad. Nauk SSSR, Vol, 195, № 4, 1967.
2. Krasovskii, N. N. and Tret'iakov, V.E., On the pursuit problem under constraints on the control impulses. Differentsial 'nye Uravneniia, Vol. 2, No 5 , 1936.
3. Krasovskii, N. N., Games-theoretical encounter of motions with bounded impulses. PMM Vol. 32, $\mathrm{N}^{2} 2,1968$.
4. Pozharitskii, G. K., On a problem of the impalse contact of motions. PMM Vol, 35, N² 5, 1971.
5. Pozharitskii, G.K., Game problem of "soft" impulse contact of two material points. PMM Vol. 36, № 2, 1972.
6. Krasovskii, N. N., Theory of Control of Motion. Moscow, "Nauka", 1968.

Translated by N. H. C.

UDC 62-50
CONTROLLABILITY OF A NONLINEAR SYSTEM IN A LINEAR APPROXIMATION

PMM Vol. 38, ${ }^{2}$ 4, 1974, pp. 599-606
E. L.TONKOV
(Tambov)
(Received November 2, 1973)

We study the conditions for the controllability of a dynamic system whose behavior in a finite-dimensional phase space is described by a nonlinear differential equation. The results obtained complement the investigations in [1-10].

1. Deflaitions and formulations of results. Let R^{n} be an n-dimensional arithmetic space of points $x=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right)$ with norm $|\cdot|$. We examine the system

$$
\begin{equation*}
x=A(t) x+B(t) u+\varphi(t, x, u), x \in R^{n}, u \in R^{m}, t \in\left[t_{0}, \infty\right) \tag{1.1}
\end{equation*}
$$

Here the real ($n \times n$) and ($n \times m$) matrices $A(t)$ and $B(t)$ are continuous for $t \in\left[t_{0}, \infty\right)$; the real function $\varphi(t, x, u)$ is continuous in the collection of arguments $(t, x, u) \in\left[t_{0}, \infty\right) \times R^{n} \times R^{m}$. Wc say that the control $u_{0}(t), t \in I=$ [t_{0}, t_{1}] translates the position $\left(t_{0}, x_{0}\right)$ of system (1.1) into the position $\left(t_{1}, 0\right)$ if the solution $x_{0}(t)$, satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ of system (1.1) under control $u=u_{0}(t)$ is defined for all $t \in I$, is unique on I, and passes through the point $x_{1}=0$ at instant $t_{1}: x_{0}\left(t_{1}\right)=0$.

